Journal of Organometallic Chemistry, 153 (1978) C4–C6 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

REACTIONS OF $(\eta$ -C₅ H₅)₂ Ti(CO)₂ WITH XCN (X = Br, I)

M. MORÁN* and V. FERNÁNDEZ

Departamento de Quimíca Inorgánica, Universidad Autónoma de Madrid, Canto Blanco (Spain)

(Received January 27th, 1978)

Summary

C4

Oxidative additions of XCN (X = Br, I) to $(\eta - C_5 H_5)_2 \operatorname{Ti}(CO)_2$ give $(\eta - C_5 H_5)_2 - \operatorname{TiX}(CN)$, (X = Br, I). The compounds were characterized by elementary analyses and IR and ¹H NMR spectra.

The carbonyl ligands of $(\eta - C_5 H_5)_2 \operatorname{Ti}(CO)_2$ are known to be readily eliminated in reactions with alkyl or aryl disulfides or acetylenes [1-3]. We have now found that addition of XCN (X = Br, I) to the ethereal solutions of $(\eta - C_5 H_5)_2 \operatorname{Ti}(CO)_2$ immediately causes evolution of carbon monoxide and quantitative formation of the yellow solid $(\eta - C_5 H_5)_2 \operatorname{TiX}(CN)$ (X = Br, I) previously unknown.

Table 1 lists IR spectral data for the two new compounds; the bands from the $C_5 H_5$ rings appear at 3000, 1400, 1100 and 800 cm⁻¹, some being doublets because of the asymmetry of these molecules. The presence of these bands indicate that no $\sigma-\pi$ rearrangement takes place [5]. The band at 1100 cm⁻¹ indicates that there is no substitution on the $C_5 H_5$ ring. The bands corresponding to $\nu(C=N)$ appear at 2120 cm⁻¹, and there are no bands in the $\nu(CO)$ region. The bands corresponding to $\nu_{as}(Ti-R)$, (R = η -C₅ H₅), appear around 400 cm⁻¹, higher than in (η -C₅ H₅)₂ Ti(CO)₂ [4], probably due to the increase in the oxidation level of Ti; we assign the band at 300 cm⁻¹ to the symmetric vibration mode of the Ti-R bond; the band from $\nu(Ti-Br)$ appears at 240 cm⁻¹, and that from $\nu(Ti-I)$ at 140 cm⁻¹.

In the ¹H NMR spectra of both compounds, two signals appear at about τ 3–3.5 ppm, corresponding to the protons of the cyclopentadienyl rings. The presence of these two signals indicates the absence of free rotation in the C₅ H₅ rings (probably due to steric hindrance by the relatively large ligands I, Br and CN) which makes the protons unequivalent.

*Author to whom correspondence should be sent.

TABLE 1

$\mathbf{x} = \mathbf{I}$	X = Br	Assignment ^b (Cs)	
3090 w	3090 w	ν(CH) Α'	
2127 m	2130 w	ν (C=N) A'	
1442 m	1440 m	ω (CC) A' + A''	
1435 m	1435 m		
1255 w	1253 w	δ(CH) Α"	
1120 w	1120 w	γ (CH) A'	
1018 m	1020 m	δ (CH) A' + A''	
1005 m	1008 m		
	850 (sh)		
815 s	810 s	γ (CH) A' + A''	
720 s	730 s		
585 w	589 w	δ(R) Α'	
420 w	418 (sh)	$\pi_{ac}(\mathbf{R}) \mathbf{A}' + \mathbf{A}''$	
405 m	407 m	$\nu_{\rm oc}$ (TiR) A"	
353 w	360 w	v(TiC) A'	
335 w	340 w	δ (TiCN) A'	
295 w	295 w	$\nu_{\rm c}({\rm TiR}) {\rm A}'$	
	240 m	v(TiBr) A'	
220 w	220 w	δ _{as} (RMR) A'	
140 s		v(Til) A'	

IR SPECTRA OF R, TIX(CN)^a

 ${}^{d}\mathbf{R} = \eta \cdot \mathbf{C}_{s} \mathbf{H}_{s}$; s = strong; vs = very strong; w = weak; vw = very weak; m = medium; (sh) = shoulder.

 $b\delta = deformation$ in the plane, $\gamma = deformation$

out of the plane, $\pi =$ tilting.

Experimental

All the reactions were carried out under N_2 . Analyses for C, H and N were carried out in the Centro Nacional de Química Orgánica (Madrid-Spain).

The Ti^{4+} was determined as TiO_2 , and the halogens as silver halides by Volhard's method.

The $(\eta - C_5 H_5)_2$ Ti(CO)₂ and the cyanogen halides were synthesised and purified by literature methods [6-7].

Preparation of $(\eta \cdot C_5 H_5)_2 Til(CN)$. In a 100 ml two-neck flask fitted with a N₂ inlet, a magnetic stirrer and a pressure-equalized dropping funnel, 2.34 g (10 mmol) of $(\eta \cdot C_5 H_5)_2 Ti(CO)_2$ were dissolved in 50 ml of anhydrous ether. A solution of 1.60 g (10.6 mmol) of ICN in 20 ml of anhydrous ether was added dropwise. A yellow solid immediately appeared, and evolution of CO is observed. The solid was filtered off, washed with ether, and dried in vacuum. Anal.: Found: C, 38.72; H, 2.97; N, 3.98; I, 37.90; Ti, 13.67. C₁₁ H₁₀ NITi calcd.: C, 39.8; H, 3.02; N, 4.22; I, 38.36; Ti, 14.5%. ¹H NMR (acetone- d_6), τ (CH) 3.22 and 3.29 ppm.

Preparation of $(\eta - C_5 H_5)_2 TiBr(CN)$. When 2.34 g (10 mmol) of $(\eta - C_5 H_5)_2$ -Ti(CO)₂ in ether were added to 1.12 g (10.6 mmol) of BrCN in 20 ml of ether a yellow solid precipitated. This was filtered off, washed with ether, and dried in high vacuum. Anal.: Found: C, 45.54; H, 3.85; N, 4.87; Br, 27.87; Ti, 16.32. $C_{11} H_{10}$ NBrTi calcd.: C, 46.70; H, 3.52; N, 4.92; Br, 28.16; Ti, 16.90%. ¹H NMR (acetone- d_6): τ (CH) 3.22 and 3.29 ppm.

References

- G. Fachinetti and C. Floriani, J. Chem. Soc. Dalton, (1974) 2433.
 G. Fachinetti and C. Floriani, Chem. Commun., (1974) 66.
 R.S.P. Coutts and P.C. Walles, J. Organometal. Chem., 73 (1974) C5.

- B. Demerseman, G. Bouguet and M. Bigorgne, J. Organometal. Chem., 132 (1977) 223.
 H.P. Fritz, Advan. Organometal. Chem., 1 (1964) 239.
 B. Bemerseman, G. Bouguet and M. Bigorgne, J. Organometal. Chem., 101 (1975) C24.
 G. Brauer, Química Inorgánica Preparativa, Ed. Reverté, Barcelona, 1968, p. 408.